https://www.halvorsen.blog

Numerical Differentiation in Python

Hans-Petter Halvorsen

Free Textbook with lots of Practical Examples

Python for Science and Engineering

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

Contents

- The Derivative
- Numerical Differentiation
- Python Examples

It is assumed that already know about the derivative from mathematics courses and that you want to use Python to find numerical solutions

The Derivative

The derivative of a function y = f(x) is a measure of how y changes with x The derivative of a function f(x) is denoted $\frac{df(x)}{dx}$ We have the following definition: Secant $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ f(x+h)f(x)Different notation is used: X x + h $\frac{df(x)}{dx} = y'(x) = \dot{y}(x)$ h

The Derivative

https://en.wikipedia.org/wiki/Derivative

The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

Example:

 $f(x) = x^2$

 $\frac{df(2)}{dx} = 2 \times 2 = 4$

Derivative Rules

There are many derivative rules (as you probably know from mathematics courses)

We will focus on the the basic rule:

$$f(x) = kx^n \implies \frac{df(x)}{dx} = k \cdot n \cdot x^{n-1}$$

Example:

$$f(x) = 4x^{3}$$
$$\frac{df(x)}{dx} = 4 \times 3x^{2} = 12x^{2}$$
$$\frac{df(3)}{dx} = 12 \times 3^{2} = 12 \times 9 = 108$$

Basic Numerical Approach

A numerical approach to the derivative of a function y = f(x) is:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Note! We will use Python in order to find the <u>numeric</u> solution – not the analytic solution

Example

$$y(x) = x^2 \quad \Longrightarrow \quad \frac{dy}{dx} = ?$$

We know for this simple example that the exact analytical solution is: $\frac{dy}{dx} = 2x$

Given the following values:

x	У
-2	4
-1	1
0	0
1	1
2	4

$$\frac{dy}{dx}(x = -2) = -4$$
$$\frac{dy}{dx}(x = -1) = -2$$
$$\frac{dy}{dx}(x = 0) = 0$$
$$\frac{dy}{dx}(x = 1) = 2$$
$$\frac{dy}{dx}(x = 2) = 4$$

Let's use Python to see if we get the same values?

Python Code

We start to plot the function:

$$y(x) = x^2$$

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(xstart, xstop, increment)

xstart = -2

xstop = 2.1

increment = 0.1

Python Code

We will use numerical differentiation to find $\frac{dy}{dx}$ for the following function:

$$y(x) = x^2$$

import numpy as np

xstart = -2
xstop = 3
increment = 1

y = x * * 2;

dydx exact = $2 \times x$

import matplotlib.pyplot as plt

Exact/Analytical Solution

x = np.arange(xstart, xstop, increment)

Comments to the Results

$$y(x) = x^2 \quad \Longrightarrow \quad \frac{dy}{dx} = ?$$

Exact Solution vs. Python Solution:

x	dy/dx (Exact solution)	dy/dx (Numeric solution)
-2	-4	-3
-1	-2	-1
0	0	1
1	2	3
2	4	_

Results from Python Script:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- The accuracy of the results are not so good.
- Can we expect better results when we increase number of data points?
- Let's Try!

Python Code

We increase number of data points to see if we get better results

Previously: x = -2, -1, 0, 1, 2Now: $x = -2.0, -1.9, -1.8, \dots 0, 0.1, \dots, 1.9, 2.0$

import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 2.1
increment = 0.1

x = np.arange(xstart, xstop, increment)

y = x * * 2;

Exact/Analytical Solution
dydx_exact = 2*x

print("dydx_exact=", dydx_exact)
plt.plot(x, dydx_exact, 'o-')

Numerical Solution
dydx_num = np.diff(y) / np.diff(x);

print("dydx_num", dydx_num)

```
xstart = -2
xstop = 2
```

x2 = np.arange(xstart, xstop, increment)

```
plt.plot(x2, dydx_num, 'o-')
plt.title("dy/dx")
plt.legend(["Exact", "Numeric"])
```

Comments to the Results

- We see that the numeric solutions becomes very close to the exact solutions.
- When h → 0 we should expect that the numerical solutions should exactly match the exact solutions.

https://www.halvorsen.blog

Differentiation on Polynomials

Hans-Petter Halvorsen

Polynomials

A polynomial is expressed as:

$$p(x) = p_1 x^n + p_2 x^{n-1} + \dots + p_n x + p_{n+1}$$

where $p_1, p_2, p_3, ...$ are the coefficients of the polynomial.

In Python we can use the **polyder()** function to perform differentiation on polynomials.

This function works the same way as the polyint() function which performs integration on polynomials.

Derivative Rules

There are many derivative rules (as you probably know from mathematics courses)

This basic rule is valid for Polynomials:

$$f(x) = kx^n \implies \frac{df(x)}{dx} = k \cdot n \cdot x^{n-1}$$

Example:

$$f(x) = 4x^{3}$$
$$\frac{df(x)}{dx} = 4 \times 3x^{2} = 12x^{2}$$
$$\frac{df(3)}{dx} = 12 \times 3^{2} = 12 \times 9 = 108$$

Example

Given the following polynomial:

$$p(x) = x^3 + 2x^2 - x + 3$$

Note!!! In order to use it in Python, we reformulate:

$$p(x) = 3 - x + 2x^2 + x^3$$

We find:

$$\frac{dp(x)}{dx} = 0 - 1 + 4x + 3x^2 = -1 + 4x + 3x^2$$

Python

$$p(x) = 3 - x + 2x^2 + x^3$$

import numpy.polynomial.polynomial as poly
p = [3, -1, 2, 1]
dpdx = poly.polyder(p)
print("dpdx =", dpdx)

We see that the Python script gives the correct answer!

Another Python Example

Given the Polynomial:

$$p(x) = 2 + x^3$$

We need to reformulate to make it work with Python:

p = [2, 0, 0, 1]
dpdx = np.polyder(p)
print("dpdx =", dpdx)

import numpy.polynomial.polynomial as poly

$$p(x) = \mathbf{2} + \mathbf{0} \cdot x + \mathbf{0} \cdot x^2 + \mathbf{1} \cdot x^3$$

We find the derivative:

 $\frac{dp(x)}{dx} = \mathbf{0} \cdot x + \mathbf{0} \cdot 2x + \mathbf{3}x^2 = 3x^2 \qquad \longrightarrow \qquad \text{The Python solution:} \\ dpdx = [0. 0. 3.]$

We see that the Python script gives the correct answer!

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

