
Numerical Differentiation
in Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• The Derivative
• Numerical Differentiation
• Python Examples

It is assumed that already know about the
derivative from mathematics courses and that
you want to use Python to find numerical
solutions

Contents

The Derivative
The derivative of a function 𝑦 = 𝑓(𝑥) is a measure of how 𝑦 changes with 𝑥

We have the following definition:

The derivative of a function 𝑓(𝑥) is denoted !"($)
!$

𝑑𝑓(𝑥)
𝑑𝑥

= lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

𝑓(𝑥)

𝑓(𝑥 + ℎ)

ℎ
𝑥 𝑥 + ℎ

Secant

𝑑𝑓(𝑥)
𝑑𝑥 = 𝑦!(𝑥) = �̇�(𝑥)

Different notation is used:

The Derivative

𝑥

𝑓(𝑥)

Tangent line

The derivative of a function of a single
variable at a chosen input value, when it
exists, is the slope of the tangent line to
the graph of the function at that point.

𝑓(𝑥")

𝑥"

𝑑𝑓(𝑥")
𝑑𝑥

Example:

𝑓 𝑥 = 𝑥#

𝑑𝑓(𝑥)
𝑑𝑥 = 2𝑥

𝑑𝑓(2)
𝑑𝑥 = 2×2 = 4𝑥 = 2

https://en.wikipedia.org/wiki/Derivative

https://en.wikipedia.org/wiki/Derivative

Derivative Rules
There are many derivative rules (as you probably know from mathematics courses)

We will focus on the the basic rule:

𝑓 𝑥 = 𝑘𝑥! 𝑑𝑓(𝑥)
𝑑𝑥

= 𝑘 (𝑛 (𝑥!"#

Example:

𝑓 𝑥 = 4𝑥$

𝑑𝑓(𝑥)
𝑑𝑥 = 4×3𝑥# = 12𝑥#

𝑑𝑓(3)
𝑑𝑥 = 12×3# = 12×9 = 108

Basic Numerical Approach
A numerical approach to the derivative of a function 𝑦 = 𝑓(𝑥) is:

𝑑𝑦
𝑑𝑥

≈
∆𝑦
∆𝑥

=
𝑦6 − 𝑦7
𝑥6 − 𝑥7

𝑓(𝑥)

𝑓(𝑥 + ℎ)

ℎ
𝑥 𝑥 + ℎ

Note! We will use Python in order
to find the numeric solution – not
the analytic solution

Example
𝑦 𝑥 = 𝑥#

𝑑𝑦
𝑑𝑥

= 2𝑥We know for this simple example that the exact analytical solution is:

𝑑𝑦
𝑑𝑥 =?

Given the following values:

x y

-2 4

-1 1

0 0

1 1

2 4

𝑑𝑦
𝑑𝑥 𝑥 = −2 = −4
𝑑𝑦
𝑑𝑥 𝑥 = −1 = −2
𝑑𝑦
𝑑𝑥 𝑥 = 0 = 0
𝑑𝑦
𝑑𝑥

𝑥 = 1 = 2
𝑑𝑦
𝑑𝑥 𝑥 = 2 = 4

Let's use Python to
see if we get the
same values?

Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 2.1
increment = 0.1
x = np.arange(xstart,xstop,increment)

y = x**2

plt.plot(x,y)

xstart = -2
xstop = 3
increment = 1
x = np.arange(xstart,xstop,increment)

y = x**2;

plt.plot(x,y, '-o')
plt.title("y(x)")

We start to plot the function:

𝑦 𝑥 = 𝑥&

x y

-2 4

-1 1

0 0

1 1

2 4

We use the following
data points: Resulting plot:

Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 3
increment = 1
x = np.arange(xstart,xstop,increment)

y = x**2;

Exact/Analytical Solution
dydx_exact = 2*x

print("dydx_exact=", dydx_exact)

plt.plot(x, dydx_exact, 'o-')

Numerical Solution
dydx_num = np.diff(y) / np.diff(x);

print("dydx_num", dydx_num)

xstart = -2
xstop = 2

x = np.arange(xstart,xstop,increment)

plt.plot(x, dydx_num, 'o-')
plt.title("dy/dx")
plt.legend(["Exact", "Numeric"])

We will use numerical differentiation
to find !'

!$
for the following function:

𝑦 𝑥 = 𝑥&

x dy/dx

-2

-1

0

1

2

We use the following
data points: Results:

dydx_exact= [-4 -2 0 2 4]
dydx_num [-3. -1. 1. 3.]

Comments to the Results
𝑦 𝑥 = 𝑥#

𝑑𝑦
𝑑𝑥

=?

Exact Solution vs. Python Solution:

dydx_exact= [-4 -2 0 2 4]
dydx_num [-3. -1. 1. 3.]

x dy/dx
(Exact solution)

dy/dx
(Numeric solution)

-2 -4 -3

-1 -2 -1

0 0 1

1 2 3

2 4 -

𝑑𝑦
𝑑𝑥

≈
∆𝑦
∆𝑥

=
𝑦6 − 𝑦7
𝑥6 − 𝑥7

Results from Python Script:

• The accuracy of the results are not so
good.

• Can we expect better results when we
increase number of data points?

• Let's Try!

Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 2.1
increment = 0.1

x = np.arange(xstart,xstop,increment)

y = x**2;

Exact/Analytical Solution
dydx_exact = 2*x

print("dydx_exact=", dydx_exact)
plt.plot(x, dydx_exact, 'o-')

Numerical Solution
dydx_num = np.diff(y) / np.diff(x);

print("dydx_num", dydx_num)

xstart = -2
xstop = 2

x2 = np.arange(xstart,xstop,increment)

plt.plot(x2, dydx_num, 'o-')
plt.title("dy/dx")
plt.legend(["Exact", "Numeric"])

We increase number of data points to see if we get
better results

Previously: x = -2,-1,0,1,2
Now: x = -2.0,-1.9, -1.8, … 0, 0.1,
…, 1.9, 2.0

Yes!

Comments to the Results

• We see that the numeric solutions becomes very close to the exact solutions.
• When ℎ → 0 we should expect that the numerical solutions should exactly

match the exact solutions.

𝑑𝑓(𝑥)
𝑑𝑥

= lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

𝑑𝑦
𝑑𝑥 ≈

∆𝑦
∆𝑥 =

𝑦6 − 𝑦7
𝑥6 − 𝑥7

Differentiation on
Polynomials

Hans-Petter Halvorsen

https://www.halvorsen.blog

Polynomials
A polynomial is expressed as:

𝑝 𝑥 = 𝑝*𝑥+ + 𝑝,𝑥+-* +⋯+ 𝑝+𝑥 + 𝑝+.*

where 𝑝*, 𝑝,, 𝑝/, … are the coefficients of the polynomial.

In Python we can use the polyder() function to perform
differentiation on polynomials.
This function works the same way as the polyint()
function which performs integration on polynomials.

Derivative Rules
There are many derivative rules (as you probably know from mathematics courses)

This basic rule is valid for Polynomials:

𝑓 𝑥 = 𝑘𝑥! 𝑑𝑓(𝑥)
𝑑𝑥

= 𝑘 (𝑛 (𝑥!"#

Example:

𝑓 𝑥 = 4𝑥$

𝑑𝑓(𝑥)
𝑑𝑥 = 4×3𝑥# = 12𝑥#

𝑑𝑓(3)
𝑑𝑥 = 12×3# = 12×9 = 108

Example
Given the following polynomial:

𝑝 𝑥 = 𝑥/ + 2𝑥, − 𝑥 + 3

Note!!! In order to use it in Python, we reformulate:

𝑝 𝑥 = 3 −𝑥 + 2𝑥,+ 𝑥/

We find:
01(2)
02

= 0 − 1 + 4𝑥 + 3𝑥, = −1 + 4𝑥 + 3𝑥,

Python
import numpy.polynomial.polynomial as poly

p = [3, -1, 2, 1]

dpdx = poly.polyder(p)

print("dpdx =", dpdx)

The Python solution:
dpdx = [-1. 4. 3.]

𝑝 𝑥 = 3 −𝑥 + 2𝑥6+ 𝑥:

𝑑𝑝(𝑥)
𝑑𝑥 = −1 + 4𝑥 + 3𝑥#

We see that the Python script gives the correct answer!

Another Python Example
import numpy.polynomial.polynomial as poly

p = [2, 0, 0, 1]

dpdx = np.polyder(p)

print("dpdx =", dpdx)

The Python solution:
dpdx = [0. 0. 3.]

𝑝 𝑥 = 2 + 𝑥:

𝑑𝑝(𝑥)
𝑑𝑥

= 𝟎 = 𝑥 + 0 = 2𝑥 + 𝟑𝑥#= 3𝑥#

We see that the Python script gives the correct answer!

𝑝 𝑥 = 𝟐 + 𝟎 5 𝑥 + 𝟎 5 𝑥6 + 𝟏 5 𝑥:

We need to reformulate to
make it work with Python:

Given the Polynomial:

We find the derivative:

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

