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It is assumed that already know about the 
derivative from mathematics courses and that 
you want to use Python to find numerical 
solutions 
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The Derivative 
The derivative of a function 𝑦 = 𝑓(𝑥) is a measure of how 𝑦 changes with 𝑥

We have the following definition:

The derivative of a function 𝑓(𝑥) is denoted !"($)
!$

𝑑𝑓(𝑥)
𝑑𝑥

= lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

𝑓(𝑥)

𝑓(𝑥 + ℎ)

ℎ
𝑥 𝑥 + ℎ

Secant

𝑑𝑓(𝑥)
𝑑𝑥 = 𝑦!(𝑥) = �̇�(𝑥)

Different notation is used:



The Derivative 

𝑥

𝑓(𝑥)

Tangent line

The derivative of a function of a single 
variable at a chosen input value, when it 
exists, is the slope of the tangent line to 
the graph of the function at that point.

𝑓(𝑥")

𝑥"

𝑑𝑓(𝑥")
𝑑𝑥

Example:

𝑓 𝑥 = 𝑥#

𝑑𝑓(𝑥)
𝑑𝑥 = 2𝑥

𝑑𝑓(2)
𝑑𝑥 = 2×2 = 4𝑥 = 2

https://en.wikipedia.org/wiki/Derivative

https://en.wikipedia.org/wiki/Derivative


Derivative Rules
There are many derivative rules (as you probably know from mathematics courses)

We will focus on the the basic rule:

𝑓 𝑥 = 𝑘𝑥! 𝑑𝑓(𝑥)
𝑑𝑥

= 𝑘 ( 𝑛 ( 𝑥!"#

Example:

𝑓 𝑥 = 4𝑥$

𝑑𝑓(𝑥)
𝑑𝑥 = 4×3𝑥# = 12𝑥#

𝑑𝑓(3)
𝑑𝑥 = 12×3# = 12×9 = 108



Basic Numerical Approach
A numerical approach to the derivative of a function 𝑦 = 𝑓(𝑥) is:

𝑑𝑦
𝑑𝑥

≈
∆𝑦
∆𝑥

=
𝑦6 − 𝑦7
𝑥6 − 𝑥7

𝑓(𝑥)

𝑓(𝑥 + ℎ)

ℎ
𝑥 𝑥 + ℎ

Note! We will use Python in order 
to find the numeric solution – not 
the analytic solution



Example
𝑦 𝑥 = 𝑥#

𝑑𝑦
𝑑𝑥

= 2𝑥We know for this simple example that the exact analytical solution is:

𝑑𝑦
𝑑𝑥 =?

Given the following values:

x y

-2 4

-1 1

0 0

1 1

2 4

𝑑𝑦
𝑑𝑥 𝑥 = −2 = −4
𝑑𝑦
𝑑𝑥 𝑥 = −1 = −2
𝑑𝑦
𝑑𝑥 𝑥 = 0 = 0
𝑑𝑦
𝑑𝑥

𝑥 = 1 = 2
𝑑𝑦
𝑑𝑥 𝑥 = 2 = 4

Let's use Python to 
see if we get the 
same values?



Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 2.1
increment = 0.1
x = np.arange(xstart,xstop,increment)

y = x**2

plt.plot(x,y)

xstart = -2
xstop = 3
increment = 1
x = np.arange(xstart,xstop,increment)

y = x**2;

plt.plot(x,y, '-o')
plt.title("y(x)")

We start to plot the function:

𝑦 𝑥 = 𝑥&

x y

-2 4

-1 1

0 0

1 1

2 4

We use the following 
data points: Resulting plot:



Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 3
increment = 1
x = np.arange(xstart,xstop,increment)

y = x**2;

# Exact/Analytical Solution
dydx_exact = 2*x

print("dydx_exact=", dydx_exact)

plt.plot(x, dydx_exact, 'o-')

# Numerical Solution
dydx_num = np.diff(y) / np.diff(x);

print("dydx_num", dydx_num)

xstart = -2
xstop = 2

x = np.arange(xstart,xstop,increment)

plt.plot(x, dydx_num, 'o-')
plt.title("dy/dx")
plt.legend(["Exact", "Numeric"])

We will use numerical differentiation 
to find !'

!$
for the following function:

𝑦 𝑥 = 𝑥&

x dy/dx

-2

-1

0

1

2

We use the following 
data points: Results:

dydx_exact= [-4 -2  0  2  4]
dydx_num [-3. -1.  1.  3.]



Comments to the Results
𝑦 𝑥 = 𝑥#

𝑑𝑦
𝑑𝑥

=?

Exact Solution vs. Python Solution:

dydx_exact= [-4 -2  0  2  4]
dydx_num [-3. -1.  1.  3.]

x dy/dx 
(Exact solution)

dy/dx 
(Numeric solution)

-2 -4 -3

-1 -2 -1

0 0 1

1 2 3

2 4 -

𝑑𝑦
𝑑𝑥

≈
∆𝑦
∆𝑥

=
𝑦6 − 𝑦7
𝑥6 − 𝑥7

Results from Python Script:

• The accuracy of the results are not so 
good.

• Can we expect better results when we 
increase number of data points?

• Let's Try!



Python Code
import numpy as np
import matplotlib.pyplot as plt

xstart = -2
xstop = 2.1
increment = 0.1

x = np.arange(xstart,xstop,increment)

y = x**2;

# Exact/Analytical Solution
dydx_exact = 2*x

print("dydx_exact=", dydx_exact)
plt.plot(x, dydx_exact, 'o-')

# Numerical Solution
dydx_num = np.diff(y) / np.diff(x);

print("dydx_num", dydx_num)

xstart = -2
xstop = 2

x2 = np.arange(xstart,xstop,increment)

plt.plot(x2, dydx_num, 'o-')
plt.title("dy/dx")
plt.legend(["Exact", "Numeric"])

We increase number of data points to see if we get 
better results 

Previously: x = -2,-1,0,1,2
Now: x = -2.0,-1.9, -1.8, … 0, 0.1, 
…, 1.9, 2.0

Yes!



Comments to the Results

• We see that the numeric solutions becomes very close to the exact solutions. 
• When ℎ → 0 we should expect that the numerical solutions should exactly 

match the exact solutions.

𝑑𝑓(𝑥)
𝑑𝑥

= lim
!→#

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

𝑑𝑦
𝑑𝑥 ≈

∆𝑦
∆𝑥 =

𝑦6 − 𝑦7
𝑥6 − 𝑥7
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Polynomials
A polynomial is expressed as:

𝑝 𝑥 = 𝑝*𝑥+ + 𝑝,𝑥+-* +⋯+ 𝑝+𝑥 + 𝑝+.*

where 𝑝*, 𝑝,, 𝑝/, … are the coefficients of the polynomial.

In Python we can use the polyder() function to perform 
differentiation on polynomials. 
This function works the same way as the polyint()
function which performs integration on polynomials.



Derivative Rules
There are many derivative rules (as you probably know from mathematics courses)

This basic rule is valid for Polynomials:

𝑓 𝑥 = 𝑘𝑥! 𝑑𝑓(𝑥)
𝑑𝑥

= 𝑘 ( 𝑛 ( 𝑥!"#

Example:

𝑓 𝑥 = 4𝑥$

𝑑𝑓(𝑥)
𝑑𝑥 = 4×3𝑥# = 12𝑥#

𝑑𝑓(3)
𝑑𝑥 = 12×3# = 12×9 = 108



Example
Given the following polynomial:

𝑝 𝑥 = 𝑥/ + 2𝑥, − 𝑥 + 3

Note!!! In order to use it in Python, we reformulate:

𝑝 𝑥 = 3 −𝑥 + 2𝑥,+ 𝑥/

We find:
01(2)
02

= 0 − 1 + 4𝑥 + 3𝑥, = −1 + 4𝑥 + 3𝑥,



Python
import numpy.polynomial.polynomial as poly

p = [3, -1, 2, 1]

dpdx = poly.polyder(p)

print("dpdx =", dpdx)

The Python solution:
dpdx = [-1.  4.  3.]

𝑝 𝑥 = 3 −𝑥 + 2𝑥6+ 𝑥:

𝑑𝑝(𝑥)
𝑑𝑥 = −1 + 4𝑥 + 3𝑥#

We see that the Python script gives the correct answer!



Another Python Example
import numpy.polynomial.polynomial as poly

p = [2, 0, 0, 1]

dpdx = np.polyder(p)

print("dpdx =", dpdx)

The Python solution:
dpdx = [0. 0. 3.]

𝑝 𝑥 = 2 + 𝑥:

𝑑𝑝(𝑥)
𝑑𝑥

= 𝟎 = 𝑥 + 0 = 2𝑥 + 𝟑𝑥#= 3𝑥#

We see that the Python script gives the correct answer!

𝑝 𝑥 = 𝟐 + 𝟎 5 𝑥 + 𝟎 5 𝑥6 + 𝟏 5 𝑥:

We need to reformulate to 
make it work with Python:

Given the Polynomial:

We find the derivative:
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